Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Павлов Валентин Николаевич

Должность: Ректор

Дата подписания: 16.02.2024 10:33:44 Уникальный программный ключ:

а562210a8a161d1bc9a34c4a0a3e820ac76b9d7366584**96646BA35440FUEQCYДАР**СТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Кафедра фундаментальной и прикладной микробиологии

Ректор ОСТ В.Н. Павлов 20 <u>т</u>.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Основы генной инженерии

Программа бакалавриата по направлению подготовки 06.03.01 Биология направленность (профиль) «Микробиология»

Форма обучения очная Срок освоения ООП - 4 года

Курс - II Контактная работа - 72 часа лекции - 22 часа практические занятия — 50 часов Самостоятельная (внеаудиторная) работа - 36 часов

Семестр IV Зачет

Всего 108 часов (3 ЗЕ)

УТВЕРЖДАЮ

Председатель УМС

по направлению подготовки Биологические науки Галимов Ш.Н.

ЛИСТ АКТУАЛИЗАЦИИ

к рабочей программе, учебно-методическим материалам (УММ)

и фонду оценочных материалов (ФОМ) учебной дисциплины Основы генной инженерии

по направлению подготовки 06.03.01 Биология

В соответствии с основной образовательной программой высшего образования по 06.03.01 по направлению подготовки Биология 2022 г. и учебным планом по направлению подготовки 06.03.01 Биология, утвержденным ФГБОУ ВО БГМУ Минздрава России 24.05.2022г., протокол № 5, проведен анализ рабочей программы, УММ и ФОМ учебной дисциплины Основы генной инженерии

Содержание и структура рабочей программы оценена и пересмотрена в соответствии с ФГОС ВО 3++.

Рабочая программа учебной дисциплины Основы генной инженерии соответствует ООП 2022г. и учебному плану 2022 г. по направлению подготовки 06.03.01 Биология. В рабочей программе дисциплины количество и распределение часов по семестрам, название тем лекций, практических занятий, виды СРО остаются без изменений. УММ составлены в соответствии с рабочей программой учебной дисциплины Основы генной инженерии без изменений. ФОСы: актуализированы тестовые задания, вопросы к зачету, разработаны ситуационные задания с учетом развития науки, образования, техники и технологий.

В рабочей программе пересмотрены компетенции и методы оценивания.

Рабочая программа дисциплины Основы генной инженерии 2022г. актуализирована и адаптирована с учетом вклада биомедицинских наук, которые отражают современный научный и технологический уровень развития клинической практики, а также текущие и ожидаемые потребности общества и системы здравоохранения.

Программа обновлена по результатам внутренней оценки и анализа литературы. Обсуждено и утверждено на заседании кафедры фундаментальной и прикладной микробиологии

Протокол №8 «26» мая 2022г.

Зав. кафедрой _____ Мавзютов А.Р.

Обсуждено и утверждено на заседании ЦМК естественнонаучных дисциплин Протокол № 7 от «07» июня 2022 г.

Обсуждено и утверждено на заседании УМС по направлению подготовки Биологические науки Протокол № 10 от «14» <u>июня</u> 2022 г.

При разработке рабочей программы учебной дисциплины «Основы генной инженерии» в основу положены:

 ФГОС ВО - бакалавриат по направлению подготовки 06.03.01 Биология, утвержденный приказом Министерства науки и высшего образования РФ № 920 от 7 августа 2020 года;

 Учебный план по программе бакалавриата по направлению подготовки 06.03.01 Биология, утвержденный Ученым советом ФГБОУ ВО «Башкирский государственный медицинский университет» от «25» мая 2021г., протокол № 6.

3) Профессиональный стандарт «Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)», утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 18 октября 2013 г. N 544н

4) Профессиональный стандарт «Микробиолог», утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 31 октября 2014 года N 865н

Рабочая программа учебной дисциплины одобрена на заседании кафедры фундаментальной и прикладной микробиологии, от «25» мая 2021 г. Протокол № 10

Заведующий кафедрой

А.Р. Мавзютов

Рабочая программа учебной дисциплины одобрена учебно-методическим советом по направлению подготовки Биология от «03» <u>июня</u> 2021г., протокол № 9

Председатель УМС, д.м.н., профессор

Ш.Н. Галимов

Разработчики: д.б.н., профессор

Ал.Х. Баймиев

Содержание рабочей программы

1. Пояснительная записка	4
2. Вводная часть	5
3. Основная часть	9
3.1. Объем учебной дисциплины и виды учебной работы	9
3.2. Разделы учебной дисциплины (модуля) и междисциплинарные связи с после-	
дующими дисциплинами	9
3.3. Разделы учебной дисциплины, виды учебной деятельности и формы контроля	12
3.4. Название тем лекций и количество часов по семестрам изучения учебной дис-	
циплины	13
3.5. Название тем практических занятий и количество часов по семестрам изуче-	
ния учебной дисциплины	13
3.6. Лабораторный практикум	14
3.7. Самостоятельная работа обучающегося	14
3.7.1. Виды СРО	14
3.7.2. Примерная тематика рефератов	14
3.8. Оценочные средства для контроля успеваемости и результатов освоения учеб-	
ной дисциплины	15
3.8.1. Виды контроля и аттестации, формы оценочных средств	15
3.8.2. Примеры оценочных средств	16
3.9. Учебно-методическое и информационное обеспечение учебной дисциплины	
	17
3.10. Материально-техническое обеспечение учебной дисциплины	18
3.11. Образовательные технологии	18
3.12. Разделы учебной дисциплины и междисциплинарные связи с последующими	
дисциплинами	19
4. Методические рекомендации по организации изучения	19
5. Протоколы утверждения	
6.Рецензии	

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Целью изучения дисциплины является формирование у обучающихся комплекса научных знаний по современной генной инженерии.

В ходе обучения преподаватель дает представление об основных достижениях в области генетической инженерии; основных методах инженерии генов и геномов живых организмов. Изложение и интерпретация материала сопровождается показом необходимых иллюстраций и демонстрационных материалов.

Теоретические знания, полученные на лекциях и в ходе самостоятельной работы с учебниками и методической литературой, должны быть закреплены на практических занятиях, на которых обучающиеся знакомятся с основами генной инженерии.

В рабочей программе предусмотрены следующие методы обучения: лекции, практические занятия, контроль знаний с помощью вопросов и тестовых заданий, самостоятельная (внеаудиторная) работа. Итоговый контроль знаний осуществляется на зачете.

Выпускник должен иметь базовые представления о молекулярно-генетических подходах в исследовании тонкого строения генов; методах соматической гибридизации для изучения процессов дифференцировки и генетического картирования; методах молекулярной генетики, применяемых для изучения структуры и активности генома человека; закономерностях роста и развития микроорганизмов; методах генетической инженерии, генетического картирования и молекулярной генетики, применяемых для изучения структуры и активности генома.

2. ВВОДНАЯ ЧАСТЬ

2.1. Цель и задачи освоения дисциплины (модуля)

Целью освоения учебной дисциплины (модуля) «Основы молекулярной генетики» является ознакомление обучающихся с современными методами и принципами генетической инженерии.

При этом задачами дисциплины являются:

- дать представление об основных достижениях в области генетической инженерии;
- охарактеризовать основные методы инженерии генов и геномов живых организмов;
- проиллюстрировать методы на конкретных примерах.

2.2. Место учебной дисциплины (модуля) в структуре ООП по направлению подготовки 06.03.01 Биология

- 2.2.1. Учебная дисциплина (модуль) «Основы молекулярной генетики» относится к дисциплинам по выбору.
- 2.2.2. Для изучения данной учебной дисциплины (модуля) обучающийся должен иметь следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

Генетике и селекции:

Знать: основные законы генетики, понятия о наследственности и изменчивости, внехромосомное наследование признаков, основы селекции, основы медицинской генетики, основы популяционной и эволюционной генетики, закон Харди-Вайнберга. Свойства генетического кода. Понятие о генетической супрессии. Строение хромосом. Изменения в организации морфологии хромосом в ходе митоза и мейоза. Онтогенетическая изменчивость хромосом. Молекулярная организация хромосом прокариот и эукариот.

Владеть: понятийным аппаратом основных разделов генетики и селекции; работать с текстом, рисунками; решать типовых задач по цитологии и молекулярной биологии на применение знаний в области биосинтеза белка, состава нуклеиновых кислот, энергетического обмена в клетке и т.д.

Уметь: обосновывать методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, онтогенетический, популяционный. Методы генетического картирования. Изучение структуры и активности генома человека с помощью методов молекулярной генетики. характерные признаки организмов, относящихся к основным царствам живой природы; сопоставлять особенности строения и функционирования организмов разных царств и организма человека; сопоставлять биологические объекты, процессы, явления на всех уровнях организации жизни.

Сформировать компетенции (отразить уровень ее сформированности): УК-1, ОПК-3.

2.3. Требования к результатам освоения учебной дисциплины (модуля)

2.3.1. Виды профессиональной деятельности, которые лежат в основе преподавания данной дисциплин:

- 1. Научно-исследовательская
- 2. Научно-производственная и проектная.

2.3.1. Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих универсальных (УК) общепрофессиональных (ОПК) компетенций:

№ п/п	Номер/ индекс компетенции (или его части) и ее содержание	Номер индикатора компетенции (или его части) и его содержание		Перечень практиче- ских навыков	Оценочные средства
1	2	3	4	5	6
1	УК-1. Способен осуществлять по- иск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1 Знает принципы сбора, отбора и обобщения информации, методики системного подхода для решения профессиональных задач УК-1.2 Находит и критически анализирует необходимую информацию УК-1.5 Определяет и оценивает последствия возможных решений задачи		поиск необходимой научной информации; способность самоорганизации и самообразованию	письменное тестирование, коллоквиум
2	ОПК-3. Способен применять знание основ эволюционной теории, использовать современные представления о структурнофункциональной организации генетической программы живых объектов и методы молекулярной биологии, генетики и биологии развития для исследования механизмов онтогенеза и филогенеза в профессиональной деятельности;	ОПК-3.1. Использует знания о основах эволюционной теории, истории развития, принципах и методических подходах общей генетики, молекулярной генетики, генетики популяций, эпигенетики, анализирует современные направления исследования эволюционных процессов; ОПК-3.3. Применяет основные методы генетического анализа ОПК-3.6. Применяет методы получения эмбрионального материала, воспроизведения живых организмов в лабораторных и производственных условиях		применение методов анализа и оценки состояния живых систем	контрольная работа, письменное тестирование, собеседование по ситуационным задачам

3.ОСНОВНАЯ ЧАСТЬ

3.1. Объем учебной дисциплины (модуля) и виды учебной работы

Вид учебной раб	Всего часов/ зачетных единиц	Семестры № 4 Часов	
1		2	3
Контактная работа (всего), в том	числе:	72/2	72
Лекции (Л)		22/0,61	22
Практические занятия (ПЗ),		50/1,39	50
Самостоятельная работа обучаю числе:	Самостоятельная работа обучающегося (СРО) , в том числе:		
Подготовка к занятиям (ПЗ)		10/0,3	10
Подготовка к текущему контролн	о (ПТК)	8/0,2	8
Подготовка к промежуточному к	онтролю (ППК)	18/0,5	18
Вид промежуточной аттестации	3	3	
ИТОГО: Общая трудоемкость	час ЗЕ	108	108

3.2. Разделы учебной дисциплины и компетенции, которые должны быть освоены

при их изучении

Nō	№ компе-	Наименование раздела	Содержание раздела в дидактических единицах (темы
п/п	тенции	учебной дисциплины	разделов)
1	2	3	4
1	УК-1,ОПК-3	Общие принципы и методы генной инженерии	Предмет и задачи генной инженерии. Развитие методов молекулярной генетики. Практическое использование научных достижений в области физико-химической биологии в биоиндустрии. Общая схема проведения генно-инженерных работ. Ферменты генетической инженерии. Методы конструирования гибридных молекул ДНК <i>in vitro</i> . Векторные молекулы ДНК. Введение молекул ДНК в клетки. Методы отбора гибридных клонов. Расшифровка нуклеотидной последовательности фрагментов ДНК. Амплификация последовательностей ДНК <i>invitro</i> .
2	УК-1,ОПК-3	Векторная система грамотрицательной бактерии Escherichia coli	Введение плазмидных и фаговых молекул ДНК в клетки <i>E. coli</i> . Строение клеточной стенки грамотрицательных бактерий. Сферопласты. «Кальциевые» компетентные клетки. Электропорация. Упаковка ДНК фага лямбда в капсиды <i>in vitro</i> . Молекулярные векторы <i>E. coli</i> . Клонирующие плазмидные векторы. Молекулярные векторы на основе ДНК фага лямбда. Искусственные бактериальные хромосомы. Фазмиды. Клонирующие векторы на основе нитевидных фагов. Фагмиды. Векторные плазмиды, обеспечивающие прямой отбор гибридных ДНК. Векторы, обеспечивающие экспрессию чужеродных генов в клетках <i>E. coli</i> . Векторы <i>E. coli</i> , детерминирующие секрецию чужеродных белков.
3	УК-1,ОПК-3	Достижение повышенной продукции белков, кодируемых генами, клонированными в клетках <i>Escherichia coli</i> .	Эффект дозы гена при молекулярном клонировании. Влияние эффективности транскрипции клонированных генов на уровень их экспрессии. Повышение эффективности трансляции матричных РНК Стабилизация чужеродных мРНК и белков в клетках <i>E. coli</i> .

4	УК-1,ОПК-3	Экспрессия клонированных эукариотических генов в клетках Escherichia coli	Сравнительный анализ организации и реализации генетической информации у прокариота и эукариот. Экспрессия хромосомных эукариотических генов в клетках <i>E. coli</i> . Клонирование ДНК-копий эукариотических матричных РНК и их экспрессия в клетках <i>E. coli</i> . Экспрессия в <i>E. coli</i> химико-ферментативно синтезированных генэквивалентов эукариотических полипептидов.
5	УК-1,ОПК-3	Генно-инженерная система грамположительных бактерий рода <i>Bacillus</i>	Введение молекул ДНК в клетки <i>Bacillus</i> . Строение клеточной стенки грамположительных бактерий. Трансформация компетентных клеток. Универсальные методы введения плазмид. Трансфекция. Молекулярные векторы <i>Bacillus</i> . Клонирующие векторы на основе плазмид стафилококков и стрептококков. Векторы на основе плазмид <i>Bacillus</i> . Векторные плазмиды, реплицирующиеся в <i>B. subtilis</i> и в <i>E. coli</i> . Векторная система секреции чужеродных белков из клеток <i>Bacillus</i> . Плазмидные интегративные векторы. Фаговые векторы. Экспрессия чужеродных генов в клетках <i>Bacillus</i> . Особенности строения и экспрессии генов грамположительных бактерий. Оптимизация экспрессии клонированных генов. Стабильность плазмид в клетках <i>B. subtilis</i> .
6	УК-1,ОПК-3	Генетическая инженерия культивируемых клеток млекопитающих	Введение молекул ДНК в клетки млекопитающих. Введение вирусных ДНК. Введение плазмид и фрагментов ДНК. Стабильность гибридных молекул ДНК в культивируемых клетках млекопитающих. Генетическая трансформация клеток млекопитающих. Генетическая трансформация мутантных линий. Котрансформация. Доминантные амплифицируемые маркеры генетической трансформации. Эписомные векторы генетической трансформации. Регулируемая экспрессия целевых генов
7	УК-1,ОПК-3	Трансгенные животные	Получение трансгенных животных. Клетки тератокарциномы мыши. Микроинъекция ооцитов. Эмбриональные стволовые клетки. Ретровирусы. Экспрессия генов в трансгенных мышах. Трансгенные животные в фундаментальных исследованиях. Нокаутные мыши. Регулируемое включение-выключение генов in vivo. Биотехнологическое применение трансгенных животных.
8	УК-1,ОПК-3	Трансгенные растения	Перенос генов в растения из бактерий рода Agrobacterium. Использование плазмид Ті A. Tumefacien ядля создания трансгенных растений. Получение трансгенных растений с помощью бинарной векторной системы A. tumefaciens. Экспрессия и наследование чужеродных генов, введенных в растения в составе Т-ДНК. Прямой метод введения трансгена в растения. Синтез в растениях чужеродных белков медицинского назначения. Терапевтические и диагностические антитела. Съедобные вакцины. Перенос генов в растения с помощью вирусов. Трансгенная система хлоропластов. Белковыйсплайсинг в трансгенных растениях. Удаление маркерных генов из трансгенных растений. Трансгенные растения с новыми биотехнологическими свойствами. Трансгенные растения в сельском хозяйстве

3.3. Разделы учебной дисциплины (модуля), виды учебной деятельности и формы контроля

			Bu	іды у	чебной	і деяте.	льно-	Формы теку-
№ п/п	№ се- местра	Наименование разде- ла учебной дисци- плины (модуля)		ельну	ю рабо	і самос ту обу часах)	чаю-	щего кон- троля успева- емости (<i>no</i>
		плины (модуля)	Л	ЛР	П3	СРО	всего	неделям се- местра)

1	2	3	4	5	6	8	9	10
1	4	Общие принципы и ме- тоды генной инженерии	2	ı	3	4	9	тестирование, устный опрос,
2	4	Векторная система грамотрицательной бактерии <i>Escherichia coli</i>	2	ı	7	4	13	тестирование, устный опрос,
3	4	Достижение повышенной продукции белков, кодируемых генами, клонированными в клетках <i>Escherichia coli</i> .	2	1	5	4	11	тестирование, устный опрос,
4	4	Экспрессия клонированных эукариотических генов в клетках Escherichia coli	3	-	6	5	14	тестирование, устный опрос,
5	4	Генно-инженерная си- стема грамположитель- ных бактерий рода <i>Bacillus</i>	2	-	6	4	12	тестирование, устный опрос,
6	4	Генетическая инженерия культивируемых клеток млекопитающих	4	-	5	5	14	тестирование, устный опрос,
7	4	Трансгенные животные	3	-	8	5	16	тестирование, устный опрос,
8	4	Трансгенные растения	4	-	10	5	19	тестирование, устный опрос,
		ИТОГО:	22	-	50	36	108	

3.4. Название тем лекций и количество часов по семестрам изучения учебной дисциплины (модуля)

п/№	Hannaya Tar Taraya Yarafiya Yaraya Taraya (Maraza)	Семестр
11/J N 2	Название тем лекций учебной дисциплины (модуля)	IV
1	Общие принципы и методы генной инженерии	2
2	Векторная система грамотрицательной бактерии Escherichia coli	2
3	Достижение повышенной продукции белков, кодируемых генами, клонированными в клетках <i>Escherichia coli</i> .	2
4	Экспрессия клонированных эукариотических генов в клетках Escherichia coli	3
5	Генно-инженерная система грамположительных бактерий рода <i>Bacillus</i> .	2
6	Генетическая инженерия культивируемых клеток млекопитающих	4
7	Трансгенные животные	3
8	Трансгенные растения	4
	Итого	22

3.5. Название тем практических занятий и количество часов по семестрам изучения учебной дисциплины

π/Nº	Название тем практических занятий базовой части дисципли- ны по ФГОС и формы контроля	Объем по семестрам IV
1	Общая схема проведения генно-инженерных работ. Методы конструирования гибридных молекул ДНК <i>in vitro</i> .	3

2	Трансформация векторной ДНК клеток <i>E.coli</i> .	4
3	Трансформация векторной ДНК клеток <i>E.coli</i> .	3
4	Выделение плазмидной ДНК. Приготовление компетентных клеток <i>E.coli</i> .	5
5	Клонирование ДНК-копий эукариотических матричных РНК и их экспрессия в клетках $E.\ coli.$	6
6	Введение молекул ДНКв клетки <i>Bacillus</i> . Трансформация компетентных клеток. Универсальные методы введения плазмид	6
7	Введение молекул ДНК в клетки млекопитающих. Введение вирусных ДНК. Введение плазмид и фрагментов ДНК.	5
8	Получение трансгенных животных. Клетки тератокарциномы мыши. Микроинъекция ооцитов.	4
9	Получение трансгенных животных. Клетки тератокарциномы мыши. Микроинъекция ооцитов.	4
10	Агробактериальная трансформация растений. Получение трансгенных бородатых корней на растениях табака.	5
11	Агробактериальная трансформация растений. Получение трансгенных бородатых корней на растениях табака.	5
		50

3.6. Лабораторный практикум Не предусмотрено учебным планом.

3.7. САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩЕГОСЯ.

3.7.1 Виды СРО.

П /П	№ се- местра	Наименование раздела учебной дисциплины (модуля)	Виды СРО	Всего часов
1	2	3	4	5
1	4	Общие принципы и методы генной инженерии	подготовка к занятию, подготовка к текущему контролю	4
2	4	Векторная система грамотрицательной бактерии Escherichia coli	подготовка к занятию, подготовка к текущему контролю	4
3	4	Достижение повышенной продукции белков, кодируемых генами, клонированными в клетках <i>Escherichia coli</i> .	подготовка к занятию, подготовка к текущему контролю	4
4	4	Экспрессия клонированных эукариотических генов в клетках Escherichia coli	подготовка к занятию, подготовка к текущему контролю	5
5	4	Генно-инженерная система грампо- ложительных бактерий рода <i>Bacillus</i>	подготовка к занятию, подготовка к текущему контролю	4
6	4	Генетическая инженерия культивируемых клеток млекопитающих	подготовка к занятию, подготовка к текущему контролю	5
7	4	Трансгенные животные	подготовка к занятию, подготовка к текущему контролю	5
8	4	Трансгенные растения	подготовка к занятию, подготовка к текущему	5

		контролю	
ИТС	ОГО часов	в семестре:	36

3.7.2. Примерная тематика рефератов

- Ферменты генетической инженерии. Методы конструирования гибридных молекул ДНК *in vitro*.
- Молекулярные векторы на основе ДНК фага лямбда. Космиды. Фазмиды. Фагмиды. Векторные плазмиды.
- Строение клеточной стенки грамположительных бактерий. Трансформация компетентных клеток.
- Клонирующие векторы на основе плазмид стафилококков и стрептококков. Плазмидные интегративные векторы. Фаговые векторы.
 - Особенности строения и экспрессии генов грамположительных бактерий.
- Генетическая трансформация клеток млекопитающих. Генетическая трансформация мутантных линий. Котрансформация.
- Плазмиды широкого круга хозяев. Молекулярные векторы на основе плазмид.

группы несовместимости IncQ.

- Использование векторов широкого круга хозяев для молекулярногенетических исследований грамотрицательных бактерий. Бифункциональные (челночные) векторные плазмиды.
- Генно-инженерные системы грамположительных бактерий, не относящихся к роду *Bacillus*.
- Трансгенные растения с новыми биотехнологическими свойствами. Трансгенные растения в сельском хозяйстве.

3.8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ УСПЕВАЕМОСТИ И РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ (МОДУЛЯ)

3.8.1. Виды контроля и аттестации, формы оценочных средств

				Оце	еночные ср	едства
№ п/п	кон- Учеоной лисийплины		Форма	Кол-во вопросов в зада- нии	К-во незави- симых вари- антов	
1	2	3	4	5	6	7
1	4	ВК, ТК	Общие принципы и методы генной инженерии	Тесты (Т), билеты (Б)	Т-10 Б-3	T-2 (2х1ПЗ) Б-18
2	4	ВК, ТК	Векторная система грамотрицательной бактерии Escherichia coli	Тесты (Т) билеты (Б)	Т-10 Б-3	Т-6 (2x1 П3) Б-18
3	4	ВК, ТК	Достижение повышенной продукции белков, кодируемых генами, клонированными в клетках Escherichiacoli.	Тесты (Т), билеты (Б)	Т-10 Б-3	T-2 (2х1ПЗ) Б-18
4	4	ВК, ТК	Экспрессия клонированных эукариотических генов в клетках <i>Escherichia coli</i>	Тесты (Т) билеты (Б)	Т-10 Б-3	Т-6 (2x1 ПЗ) Б-18
5	4	ВК, ТК	Генно-инженерная система грамположительных бактерий рода <i>Bacillus</i>	Тесты (Т) билеты (Б)	Т-10 Б-3	Т-6 (2x1 ПЗ) Б-18
6	4	ВК, ТК	Генетическая инженерия	Тесты (Т)	T-10	T-6 (2x1 Π3)

			культивируемых клеток	билеты (Б)	Б-3	Б-18
			млекопитающих			
7	4	ВК, ТК	Трансгенные животные	Тесты (Т)	T-10	T-6 (2x1 Π3)
,	4	DK, TK		билеты (Б)	Б-3	Б-18
8	4	DI/ TI/	Трансгенные растения	Тесты (Т)	T-10	T-6 (2x1 Π3)
0	4	4 BK K ^		билеты (Б)	Б-3	Б-18
			Зачет	Тесты (Т)		
				Практиче-	T-25	T-3
9	4	ПК		ские	ПН-30	ПН-1
				навыки	Б-3	Б-30
				билеты (Б)		

3.8.2. Примеры оценочных средств:

3.8.2. Примеры оценочны	х средств:
для входного контроля	Последовательность генно-инженерных работ:
(BK)	1. Клонирование ДНК в векторе;
	2. Выделение или синтез ДНК;
Тесты (Т)	3. Введение ДНК в клетку-мишень;
	4. Модификация ДНК;
	Компетентность – это:
	1. свойство векторов трансформировать клетки;
	2. способность плазмид автономно реплицироваться;
	3. способность клеток поглощать ДНК из окружающей сре-
	ды;
	4. способность бактерий расти на различных питательных
	средах;
	Для экспрессии в прокариотической системе эукариотиче-
	ские гены должны:
	1. иметь уникальные сайты рестрикции;
	2. находиться под бактериальным промотором;
	3. находиться в инвертированном положении;
	4. не должны содержать интроны;
для текущего контроля	Б
(TK)	• Электропорация
	• Клонирующие плазмидные векторы
Билеты (Б)	
для промежуточного	Б3:
контроля (ПК)	• Эффект дозы гена при молекулярном клонировании.
	• Строение клеточной стенки грамположительных бактерий.
Билеты к зачету (БЗ)	

Перечень вопросов к зачету

- Предмет и задачи генной инженерии. Развитие методов молекулярной генетики. Практическое использование научных достижений в области физико-химической биологии в биоиндустрии.
- Общая схема проведения генно-инженерных работ. Ферменты генетической инженерии. Методы конструирования гибридных молекул ДНК *in vitro*.
- Векторные молекулы ДНК. Введение молекул ДНК в клетки. Методы отборабгибридных клонов. Расшифровка нуклеотидной последовательности фрагментов ДНК. Амплификация последовательностей ДНК *in vitro*.
- Введение плазмидных и фаговых молекул ДНК в клетки *E. coli*. Строение клеточной стенки грамотрицательных бактерий. Сферопласты. «Кальциевые» компетентные клетки. Электропорация. Упаковка ДНК фага лямбда в капсиды *in vitro*.

- Молекулярные векторы *E. coli*. Клонирующие плазмидные векторы. Молекулярные векторы на основе ДНК фага лямбда. Космиды. Искусственные бактериальные хромосомы. Фазмиды. Клонирующие векторы на основе нитевидных фагов. Фагмиды. Векторные плазмиды, обеспечивающие прямой отбор гибридных ДНК. Векторы, обеспечивающие экспрессию чужеродных генов в клетках *E. coli*. Векторы *E. coli*, детерминирующие секрецию чужеродных белков.
- Эффект дозы гена при молекулярном клонировании. Влияние эффективности транскрипции клонированных генов на уровень их экспрессии. Повышение эффективности трансляции матричных РНК. Стабилизация чужеродных мРНК и белков в клетках *E. coli*.
- Организация и реализации генетической информации у прокариот и эукариот. Экспрессия хромосомных эукариотических генов в клетках *E. coli*. Клонирование ДНК-копий эукариотических матричных РНК и их экспрессия в клетках *E. coli*. Экспрессия в *E. coli* химико-ферментативно синтезированных ген-эквивалентов эукариотических полипептидов.
- Введение молекул ДНК в клетки *Bacillus*. Строение клеточной стенки грамположительных бактерий. Трансформация компетентных клеток. Универсальные методы введения плазмид. Трансфекция. Молекулярные векторы *Bacillus*.
- Клонирующие векторы на основе плазмид стафилококков и стрептококков. Векторы на основе плазмид*Bacillus*. Векторные плазмиды, реплицирующиеся в *B. subtilis*и в *E. coli*. Векторная система секреции чужеродных белков из клеток *Bacillus*. Плазмидные интегративные векторы. Фаговые векторы.
- Экспрессия чужеродных генов в клетках *Bacillus*. Особенности строения и экспрессии генов грамположительных бактерий. Оптимизация экспрессии клонированных генов. Стабильность плазмид в клетках *B. subtilis*.

3.9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ (МОДУЛЯ)

3.9.1. Основная литература

	3.7.1. Основная литература								
п/№	Наименование	Автор (ы)	Год, место	Кол-во экземпляров					
11/312	паименование	Автор (ы)	издания	в библиотеке	на кафедре				
1	2	3	4	5	6				
1	Общая и молекулярная	Wиналь II ф	Новосибирск		1				
	генетика	Жимулев, И. Ф.	Сибирск. 2007.	35					
2	Молекулярная	Прошкина, Е. Н.	М. : Из-						
	биология: стресс-		дательство						
	реакции клетки		Юрайт, 2020.	, 2020. Неограниченный д					
	http://www.biblio-								
	online.ru/bcode/454873								

3.9.2. Дополнительная литература

п/№	Наименование	Автор (ы)	Год, место	Кол-во экземпляров		
11/3/12		Автор (ы)	издания	в библиотеке	на кафедре	
1	Электронно-библиотечн	отечная система «Лань» http://e.lanboo				
2	Электронно-библиотечн дента» для ВПО	www.studmedlib.ru				
4	Электронно-библиотечн	https://www.biblio-online.ru				
5	База данных «Электронная учебная библиотека» htt				http://library.bashgmu.ru	
6	Электронно-библиотечная система eLIBRARY. Коллекция российских научных журналов по медицине и здравоохранению					

3.10. Материально-техническое обеспечение учебной дисциплины (модуля)

Использование лабораторного и инструментального оборудования, учебных комнат для работы обучающихся.

1. Учебная комната:

Специальная мебель: рабочее место для преподавателя (1 стол, 1 стул); рабочее место для обучающихся (письменные столы (парты), парты на 25 посадочных мест); письменная доска, компьютер, мультимедийный проектор, экран, стенды с учебнометодическими материалами, демонстрационный и справочный материал

2. Комната для самостоятельной работы:

Специальная мебель:

Рабочее место для обучающихся (письменные столы, стулья); шкаф для хранения документов, компьютеры с возможностью подключения к сети интернет.

Имеются необходимые комплекты лицензионного программного обеспечения для учебного процесса:

№ п/ п	Наименование лицензи- онного программного обеспечения	Реквизиты подтверждаю- щего документа	Срок дей- ствия лицензии	Описание программного обеспечения
1	Microsoft Desktop School ALNG LicSAPk OLVS E 1Y AcadenicEdition Enter- prase	Договор № 0301100049620000732-0001от 01.02.2021, ООО "Софтлайн Трейд"	2021 год	Операционная система Microsoft Windows
2	Microsoft Desktop School ALNG LicSAPk OLVS E 1Y AcadenicEdition Enter- prase	Договор № 0301100049620000732-0001от 01.02.2021, ООО "Софтлайн Трейд"	2021 год	Пакет офисных программ Microsoft Office
3	Kaspersky Endpoint Security для бизнеса – Стандартный Russian Edition. 500-999 Node 1 year Educational Renewal License антивирус Касперского	Договор № 0301100049620000732-0001от 01.02.2021, ООО "Софтлайн Трейд"	2021 год	Антивирус Касперского – система антивирусной защиты рабочих станций и файловых серверов
4	Dr.Web Desktop Security Suite	Договор № 0301100049620000732-0001от 01.02.2021, ООО "Софтлайн Трейд"	2021 год	Антивирус Dr.Web – система антивирусной защиты рабочих станций и файловых серверов
5	Русский Moodle 3KL	Договор № 0301100049620000732-0001от 01.02.2021, ООО "Софтлайн Трейд"	2021 год	Система дистанционного обучения для Учебного портала

3.11. Образовательные технологии

Используемые образовательные технологии при изучении данной дисциплины 20% интерактивных занятий от объема контактной работы

Примеры интерактивных форм и методов проведения занятий: имитационные технологии: ролевые и деловые игры, тренинг, игровое проектирование и др.; неимитационные технологии: лекции (проблемные, визуализация и др.), дискуссии (с «мозговым штурмом» и без него).

3.12. Разделы учебной дисциплины (модуля) и междисциплинарные связи с последующими лисциплинами

Π/N_{2}	Наименование по-	Разделы данной дисциплины, необходимые для изучения после-
-------------	------------------	--

	следующих дисци-				дующи	х дисципл	ин		
	плин	1	2	3	4	5	6	7	8
		Общие принципы и ме- тоды генной инженерии	Векторная система гра- мотрицательной бакте-	Достижение повышен- ной продукции белков,	Экспрессия клонированных эукариотических генов в клетках	Генно-инженерная си- стема грамположитель- ных бактерий рода	Генетическая инженерия культивируемых клеток млекопитающих	Трансгенные животные	Трансгенные растения
1.	Сельскохозяйственная микробиология	1	-	+	+	+	+	+	
2.	Промышленная микробиология и биотехнология	+	1	+	+	1	+	-	-
3.	Государственная итоговая аттестация	ı	+	+	+	+	+	+	+

4. Методические рекомендации по организации изучения дисциплины:

Обучение складывается из контактной работы (72 часа), включающих лекционный курс и практические занятия, и самостоятельной работы (36 часов). Основное учебное время выделяется на самостоятельную работу.

При изучении учебной дисциплины (модуля) необходимо использоватьзнания, умения и навыки, формируемые предшествующими дисциплинами (генетике и селекции, основам молекулярной генетики) и освоить практические умения.

Практические занятия проводятся в виде контактной работы и включают выступления обучающихся, семинары, беседы, обсуждения, выполнение лабораторной части практического занятия, решение тестов.

В соответствии с требованиями $\Phi\Gamma$ OC BO в учебном процессе широко используются активные и интерактивные формы проведения занятий (объяснительно-иллюстративное обучение с визуализацией, модульное обучение, информатизационное обучение, мультимедийное обучение). Удельный вес занятий, проводимых в интерактивных формах, составляет не менее 20.0% от контактной работы .

Самостоятельная работа обучающихся подразумевает подготовку научноисследовательских работ и включает изучение теоретического материала и проведение экспериментальных работ с представлением и обсуждением результатов.

Работа с учебной литературой рассматривается как вид учебной работы по дисциплине «Основы генной инженерии» и выполняется в пределах часов, отводимых на её изучение (в разделе СРО).

Каждый обучающийся обеспечен доступом к библиотечным фондам Университета и кафедры.

По каждому разделу учебной дисциплины разработаны методические рекомендации для обучающихся и методические указания для преподавателей в электронной базе кафедры.

Во время изучения учебной дисциплины студенты самостоятельно проводят экспериментальные лабораторные работы, оформляют протоколы и обрабатывают, анализируют и обобщают результаты наблюдений и измерений, оформляют рабочую тетрадь и представляют преподавателю для проверки.

Работа обучающегося в группе формирует чувство коллективизма и коммуникабельность. Исходный уровень знаний обучающихся определяется тестированием, текущий контроль усвоения предмета определяется устным опросом в ходе занятий, и проверкой ответов на тестовые задания.

В конце изучения учебной дисциплины (модуля) проводится промежуточный контроль знаний с использованием тестового контроля, проверкой практических умений и устного опроса по билетам.

Вопросы по учебной дисциплине (модулю) включены в Государственную итоговую аттестацию выпускников.

Итоговый контроль знаний обучающихся осуществляется на зачете.