Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Павлов Валентин Николаевич

Должность: Ректор

Дата подписания: 12.01.2023 10:13:18

Уникальный программный ключ:

от «13» августа 2020 г. № 998

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

(наименование дисциплины)

Разработчик	Кафедра фундаментальной и прикладной микробиологии 30.05.01 Медицинская биохимия		
Специальность			
Наименование ООП	30.05.01 Медицинская биохимия		
ФГОС ВО	Утвержден Приказом Министерства науки и высшего образования Российской Федерации		

Паспорт оценочных материалов по дисциплине / Молекулярная биология

№	Наименование пункта	Значение
1.	Специальность/направление подготовки	30.05.01 Медицинская биохимия
2.	Наименование дисциплины	Молекулярная биология
3.	Для оценки «отлично» не менее	91%
4.	Для оценки «хорошо» не менее	81%
5.	Для оценки «удовлетворительно» не менее	71%
6.	Время тестирования (в минутах)	90 минут

Код контролируемой компетенции

УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

На закрытый вопрос рекомендованное время – 2 мин.

No॒	Вопросы	Правильные ответы
Выберите один правильный ответ		
1.	МОНОМЕРАМИ БЕЛКОВ ЯВЛЯЮТСЯ:	В
	А. нуклеотиды	
	Б. нуклеосомы	
	В. аминокислоты	
	Г. нуклеотиды	
2.	НУКЛЕОТИД – ЭТО МОНОМЕР	Б
	А. белков	
	Б. нуклеиновых кислот	
	В. жиров	
	Г. углеводов	
3.	ПРОСТЫЕ БЕЛКИ СОСТОЯТ	Б
	А. только из нуклеотидов	
	Б. только из аминокислот	
	В. из аминокислот и небелковых соединений	
	Г. только из углеводов	
4.	В СТРОЕНИИ БЕЛКОВ РАЗЛИЧАЮТ	В
	А. два уровня организации молекулы	
	Б. три уровня организации молекулы	
	В. четыре уровня организации молекулы.	
	Г. пять уровней организации молекулы	
5.	К ПЕРВИЧНОЙ СТРУКТУРНОЙ ОРГАНИЗАЦИИ	В
	ДНК ОТНОСИТСЯ	
	А. трехмерная спираль	
	Б. две комплементарные друг другу антипараллельные	
	полинуклеотидные цепи	
	В. полинуклеотидная цепь	
	Г. одноцепочечная молекула	
6.	РНК В ЯДРЕ СОСРЕДОТОЧЕНО В	Б
	А. ядерной оболочке	
	Б. ядрышке	
	В. нуклеоплазме	
	Г. митохондриях	
7.	ИНФОРМАЦИЯ О СТРОЕНИИ БЕЛКА	A
	ПЕРЕДАЕТСЯ В ЦИТОПЛАЗМУ	
	А. матричной РНК	
	Б. транспортной РНК	
	В. рибосомной РНК	
	Г. т-РНК	
8.	ПРОЦЕССИНГ – ЭТО	Б
	А. синтез РНК	
	Б. созревание РНК	

	р шис	
	В. созревание ДНК	
	Г. синтез нуклеотидов	D
9.	ЗА РАСПЛЕТЕНИЕ МОЛЕКУЛЫ ДНК	В
	ОТВЕТСТВЕНЕН ФЕРМЕНТ	
	А. ДНК – полимераза	
	Б. лигаза	
	В. геликаза	
10	Г. изомераза	D
10.	ТРАНСКРИПЦИЯ – ЭТО	В
	А. процесс самокопирования ДНК с образованием двух идентичных дочерних молекул	
	Б. процесс переписывания информации, содержащейся	
	в РНК, в форме ДНК	
	В. процесс переписывания информации, содержащейся в ДНК, в форме РНК	
	Г. процесс переписывания информации с полипептида	
11.	В РЕЗУЛЬТАТЕ ТРАНСКРИПЦИИ ОБРАЗУЕТСЯ	В
11.	А. только матричная РНК	Б
	Б. только транспортная РНК	
	В. все типы РНК клетки	
	Г. и-РНК	
12.	РИБОСОМЫ В ПРОЦЕССЕ ТРАНСЛЯЦИИ	Б
12.	СОЕДИНЯЮТСЯ В СТРУКТУРУ, НАЗЫВАЕМУЮ	Б
	А. шероховатая ЭПС	
	Б. полисома	
	В. полимер	
	Г. аппарат Гольджи	
13.	ПЕРВЫМ ОБЪЕКТОМ ГЕННОЙ ИНЖЕНЕРИИ	A
13.	СТАЛА	71
	A. E.coli	
	5. S.cerevisae	
	B. B.subtilis	
	Г. Candida spp.	
14.	ТОПОИЗОМЕРАЗА ВЫПОЛНЯЕТ ФУНКЦИЮ:	Б
1	А. полимеризация ДНК	2
	Б. устранение супервитков ДНК	
	В. спирализация ДНК	
	Г. соединение фрагментов Оказаки	
15.	УЧАСТОК, С КОТОРОГО НАЧИНАЕТСЯ СИНТЕЗ	A
	РНК:	
	А. промотор	
	Б. оперон	
	В. терминатор	
	Г. все названные	
16.	КАЖДАЯ ХРОМОСОМА ЭУКАРИОТ СОДЕРЖИТ:	Γ
	А. 1 молекулу ДНК	
	Б. 2 молекулы ДНК	
	В. молекулу РНК	
	Г. 2 молекулы ДНК в связи с белками-гистонами	
17.	ДЛЯ ДЕЙСТВИЯ ДНК-ПОЛИМЕРАЗЫ	В
	НЕОБХОДИМО ПРИСУТСТВИЕ:	
	А. ДНК-затравки	
	_ · · ·	i .

	E DIVIC	
	Б. РНК-затравки	
	В. 3' ОН затравки	
	Г. хеликазы	
18.	ИЗ ДВУХ РАСТУЩИХ ЦЕПЕЙ ДНК	A
	СИНТЕЗИРУЕТСЯ НЕПРЕРЫВНО:	
	А. ведущая цепь	
	Б. отстающая цепь	
	В. отстранённая цепь	
	Г. обе цепи	
19.	СОЕДИНЕНИЕ НУКЛЕОТИДОВ В	Б
	ПОЛИНУКЛЕОТИДНУЮ ЦЕПЬ МОЛЕКУЛЫ ДНК	
	ОСУЩЕСТВЛЯЕТСЯ СВЯЗЬЮ	
	А. пептидной	
	Б. фосфодиэфирной	
	В. дисульфидной	
	Г. водородной	
20.	ПОСТТРАНСЛЯЦИОННЫЕ ПРОЦЕССЫ:	Б
	А. сборка первичной структуры белка	
	Б. сборка вторичной и третичной структуры белка	
	В. сборка рибосомы	
	Г. синтез лизосом	

Код контролируемой компетенции

ОПК-3. Способен использовать специализированное диагностическое и лечебное оборудование, применять медицинские изделия, лекарственные средства, клеточные продукты и генноинженерные технологии, предусмотренные порядками оказания медицинской помощи.

На закрытый вопрос рекомендованное время – 2 мин.

№	Вопросы	Правильные
	Вопросы	ответы
	Выберите один правильный ответ	
21.	СХОДСТВО ПРОЦЕССОВ РЕПЛИКАЦИИ И	В
	ТРАНСКРИПЦИИ ЗАКЛЮЧАЕТСЯ В ТОМ, ЧТО	
	А. синтез дочерних молекул осуществляется в	
	направлении 5'→3'	
	Б. движущая сила – гидролиз пирофосфата	
	В. верны оба варианта ответа	
	Г. движущая сила – пиролиз	
22.	ОТЛИЧИЕ ПРОЦЕССОВ РЕПЛИКАЦИИ И	A
	ТРАНСКРИПЦИИ	
	А. при репликации материнская молекула ДНК	
	разрушается, а при транскрипции – сохраняется	
	Б. для функционирования основного фермента	
	репликации необходимы ионы Mg ²⁺ , а транскрипции –	
	Fe ²⁺	
	В. в активном центре полимеразы транскрипции	

T	I
Г. при репликации материнская молекула ДНК	
сохраняется	
КЛЕТОЧНАЯ СТЕНКА ГРАМОТРИЦАТЕЛЬНЫХ	Б
БАКТЕРИЙ ХАРАКТЕРИЗУЕТСЯ	
А. очень толстым пептидогликановым слоем	
Б. наличием внешней мембраны	
В. отсутствием липополисахаридов	
Г. неправильной формой	
ИСПОЛЬЗУЕМАЯ В КАЧЕСТВЕ ВЕКТОРА	Б
ПЛАЗМИДА ДОЛЖНА	
А. не должна самостоятельно реплицироваться	
Б. реплицироваться строго синхронно вместе с	
хромосомной ДНК	
В. находиться в клетке в одной копии	
Г. иметь ослабленный контроль репликации	
ВЫРОЖДЕННОСТЬ ГЕНЕТИЧЕСКОГО КОДА – ЭТО	Б
А. каждый триплет кодирует только одну	
аминокислоту	
Б. многие аминокислоты кодируются несколькими	
триплетами	
В. каждый отдельный нуклеотид входит в состав	
только одного триплета	
Г. соседние триплеты не перекрывают друг друга	
	КЛЕТОЧНАЯ СТЕНКА ГРАМОТРИЦАТЕЛЬНЫХ БАКТЕРИЙ ХАРАКТЕРИЗУЕТСЯ А. очень толстым пептидогликановым слоем Б. наличием внешней мембраны В. отсутствием липополисахаридов Г. неправильной формой ИСПОЛЬЗУЕМАЯ В КАЧЕСТВЕ ВЕКТОРА ПЛАЗМИДА ДОЛЖНА А. не должна самостоятельно реплицироваться Б. реплицироваться строго синхронно вместе с хромосомной ДНК В. находиться в клетке в одной копии Г. иметь ослабленный контроль репликации ВЫРОЖДЕННОСТЬ ГЕНЕТИЧЕСКОГО КОДА – ЭТО А. каждый триплет кодирует только одну аминокислоту Б. многие аминокислоты кодируются несколькими триплетами В. каждый отдельный нуклеотид входит в состав

№	Вопросы	Правильные ответы		
	Дополните			
26.	Селективный маркер позволяет	отбирать трансформированные клетки		
27.	Фермент, способный наращивать концы линейных молекул ДНК	полимераза		
28.	Ряд небольших одноцепочечных фрагментов отстающей цепи ДНК	фрагменты Оказаки		
29.	Для экспрессии в прокариотической системе эукариотические гены должны	находиться в инвертированном положении		
30.	Основная структурная единица хромосомы эукариотической клетки	хроматида		
31.	Небольшие молекулы ДНК в цитоплазме бактерий	плазмиды		
32.	Генотип – это	совокупность генов организма		
33.	Характеристика молекулы ДНК, при которой 5'-конец одной цепи комплементарен 3'-концу другой	антипараллельность		
34.	Неинформативные нуклеотидные последовательности генов	интроны		
35.	В результате нагревания молекулы ДНК до $100 {\rm C}^{\rm o}$ в течение $30 {\rm минут}$.	молекула останется без изменений		
36.	Гены, ответственные за синтез белков общего назначения (белков мембран,	конститутивные		

	рибосом)	
37.	Синтез белка обозначают термином	трансляция
38.	Посттрансляционные процессы	сборка вторичной и третичной структуры белка
39.	Цепь ДНК, участвующая в транскрипции .	кодогенная
40.	Синтез РНК-затравки – функция фермента .	праймазы
41.	Фаза инициации при трансляции	формирование комплекса и-РНК, рибосомы и аминокислоты
42.	Кодон инициации кодирует аминокислоту	метионин
43.	Полимеразную цепную реакцию можно считать амплификацией ДНК	in vivo
44.	ДНК-полимераза в качестве субстрата использует	дезоксирибонуклеотидтриф осфаты
45.	Инициацию репликации осуществляет	РНК- праймер
46.	Функция репарационной эндонуклеазы	вырезание мутагенной ошибки, допущенной ДНК-полимеразой
47.	Второй уровень спирализации молекулы ДНК в хромосоме эукариот называется	соленоид
48.	Трансляция ДНК наблюдается	у эукариот
49.	Радиоактивную метку, включенную в молекулы ДНК, можно обнаружить с помощью .	молекулярно- биологического метода
50.	Образование фосфодиэфирной связи между 3' и 5' концом ДНК осуществляется благодаря наличию иона	фосфора
51.	Фермент, способный разрывать цепь ДНК на уровне фосфодиэфирных связей	рестриктаза
52.	Фрагменты Оказаки после присоединения к отстающей цепи нуждаются в	сшивании
53.	Две хроматиды объединяются	центромерой
54.	Плазмиды реплицируются	автономно
55.	Фенотип – это	совокупность характеристик, формируемая генотипом
56.	Характеристика мономеров молекулы ДНК выстраиваться в строгом соответствии водородной связью	комплементарность
57.	Информативные нуклеотидные последовательности генов	экзоны
58.	Перепись последовательности с матричной цепи ДНК на и-РНК обозначают термином	транскрипция

	·	
59.	Процессинг – это	преобразование пре-РНК в и-РНК, р-РНК и т-РНК
60.	Фаза терминации при трансляции	встреча рибосомы со стоп- кодоном, прерывающим синтез полипептидной цепи
61.	Реплисома – это	единица репликации
62.	Четвертичная структура белка характерна для .	глобулярных белков
63.	Связь между нуклеотидами обеспечивается связями	водородными и фосфодиэфирными
64.	Фермент, расплетающий цепи ДНК	геликаза
65.	Сходство процессов репликации и транскрипции заключается в том, что	синтез дочерних молекул осуществляется в направлении 5'-3', движущая сила – гидролиз пирофосфата
66.	Полисома – это	структура из рибосом, соединившихся во время трансляции
67.	Используемая в качестве вектора плазмида должна	реплицироваться строго синхронно вместе с хромосомной ДНК
68.	Метод введения чужеродной ДНК в клетки с помощью высоковольтного разряда называется .	электропорацией
69.	Чужеродная ДНК, попавшая в клетки в природе, как правило, не проявляет активности, так как разрушается ферментом	рестриктазой
70.	Наиболее прочные водородные связи между нуклеотидами у	аденин-тимин
71.	При полимеразной цепной реакции количество ДНК от цикла к циклу увеличивается в	геометрической прогрессии
72.	Топоизомераза – это	фермент, устраняющий супервитки ДНК
73.	Гистоны, входящие в состав нуклеосомы -	H1A, H2A, H3, H4
74.	Хромосома состоит из	двух цепей ДНК, образующих хроматиды, и соединяющих их центромеры
75.	Ведущая цепь синтезируется	непрерывно
76.	Репарация ДНК – это	восстановление исходной нуклеотидной последовательности ДНК
77.	Фаза элонгации при трансляции	наращивание полипептидной цепи

	Форо иниципальный произвединий	TRANSCOTTANIA TRANSCOROR IS
78.	Фаза инициации при транскрипции -	присоединение праимеров к
70.	·	свободным участкам
	A	разъединённой цепи
70	Фаза элонгации при транскрипции	продвижение полимеразы
79.		по цепи, сборка
		полинуклеотида
	Фаза терминации при транскрипции -	отхождение полимеразы с
80.	·	цепи, сшивание фрагментов
		Оказаки лигазой
81.	Процессинг осуществляется в	ядре
82.	Посттрансляционные процессы	эндоплазматической сети
	осуществляются в	
83.	Транскрипция происходит в	ядре
84.	Трансляция происходит в	цитоплазме
	T DIVIC	
0.7	Процессинг и-РНК включает такие	кэпирование,
85.	процессы, как	полиаденилирование,
		сплайсинг, метилирование
	Присоединение к 5' концу 7-метилгуанозина	кэпированием
86.	5',5'-трифосфатным мостиком называется	
00.	·	
	П	
0.7	Полиаденилирование – это	присоединение к 3' концу
87.		100-200 остатков
		адениловой кислоты
88.	Удаление некодирующих участков	сплайсингом
	генетического материала называется	
89.	Метилирование – это	присоединение метильной
		группы
	Оперон включает в себя	промотор, оператор,
90.		структурные гены и
		терминатор
91.	Функциональная единица генома у	оперон
91.		
· -•	прокариот	
		транскриптон / ген
92.	прокариот Функциональная единица генома у эукариот	транскриптон / ген
	Функциональная единица генома у эукариот	
92.	Функциональная единица генома у эукариот Дочерние клетки диплоидных клеток в	транскриптон / ген диплоидный
	Функциональная единица генома у эукариот	
92.	Функциональная единица генома у эукариот	диплоидный
92. 93.	Функциональная единица генома у эукариот Дочерние клетки диплоидных клеток в результате митоза имеют набор хромосом Дочерние клетки диплоидных клеток в	
92.	Функциональная единица генома у эукариот	диплоидный
92. 93.	Функциональная единица генома у эукариот — . Дочерние клетки диплоидных клеток в результате митоза имеют набор хромосом — . Дочерние клетки диплоидных клеток в результате мейоза имеют набор хромосом	диплоидный гаплоидный
92. 93. 94.	Функциональная единица генома у эукариот Дочерние клетки диплоидных клеток в результате митоза имеют набор хромосом Дочерние клетки диплоидных клеток в результате мейоза имеют набор хромосом Дочерние клетки гаплоидных клеток в	диплоидный
92. 93.	Функциональная единица генома у эукариот — . Дочерние клетки диплоидных клеток в результате митоза имеют набор хромосом — . Дочерние клетки диплоидных клеток в результате мейоза имеют набор хромосом	диплоидный гаплоидный
92. 93. 94.	Функциональная единица генома у эукариот — . Дочерние клетки диплоидных клеток в результате митоза имеют набор хромосом — . Дочерние клетки диплоидных клеток в результате мейоза имеют набор хромосом — . Дочерние клетки гаплоидных клеток в результате митоза имеют набор хромосом — .	диплоидный гаплоидный гаплоидный
92. 93. 94.	Функциональная единица генома у эукариот Дочерние клетки диплоидных клеток в результате митоза имеют набор хромосом Дочерние клетки диплоидных клеток в результате мейоза имеют набор хромосом Дочерние клетки гаплоидных клеток в	диплоидный гаплоидный
92. 93. 94.	Функциональная единица генома у эукариот — . Дочерние клетки диплоидных клеток в результате митоза имеют набор хромосом — . Дочерние клетки диплоидных клеток в результате мейоза имеют набор хромосом — . Дочерние клетки гаплоидных клеток в результате митоза имеют набор хромосом — .	диплоидный гаплоидный гаплоидный

	Комплементарные тимину нуклеотиды ДНК	урацилу
98.	после транскрипции в цепи РНК будут	
	соответствовать нуклеотиду	
99.	Репликация ДНК осуществляется в периоде	премитотическом
99.	жизненного цикла клетки	
100.	Ион, необходимый для ферментов	магний
100.	репликации	

Задачи

Код контролируемой компетенции

УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

3.0	TC		
$N_{\underline{0}}$	Код		
	контролиру		
	емой	Содержание задания	Правильные ответы
	компетенци		
	И		
1.	УК-1	Арахнодактилия наследуется	вероятность рождения здоровых детей
		как доминантный аутосомный	в семье = 3/80
		признак с пенетрантностью	
		30%. Ангиоматоз сетчатой	
		оболочки наследуется как	
		доминантный аутосомный	
		признак с пенетрантностью	
		50%. Определите вероятность	
		рождения здоровых детей в	
		семье, где отец болен	
		ангиоматозом, а мать	
		арахнодактилией. В отношении	
		других признаков оба здоровы.	
2.	УК-1	Кодирующий участок ДНК	если участок ДНК представлен
		состоит из следующих	следующей последовательностью
		нуклеотидов:ГЦА ТТТ АГА	нуклеотидов
		ТГА ААТ ЦАА?	ГЦАТТТАГАТГАААТЦАА, то
		1) Напишите состав кодонов	полипептид будет состоять из
		мРНК, транскрибируемой с	аминокислот: аланина, глицина,
		этой цепи;	цистеина, фенилаланина, триптофана и
		2) Определите состав	аспарагина.
		соответствующих	
		антикодонов тРНК,	
		участвующих в трансляции;	
		3)Какие аминокислоты	
		еносят соответствующие тРНК	
3.	УК-1	Полипептид состоит из	если полипептид представлен
		следующих аминокислот:	следующей последовательностью

		валин – аланин –глицин – лизин – триптофан – валин – серин глутаминовая кислота – указанный полипептид.	аминокислот валин — аланин — глицин — лизин — триптофан — валин —серин — глутаминовая кислота, то структура участка ДНК, кодирующего данный полипептид, следующая: ТТТ — ЦАА — АЦЦ — ААА — ЦАА — ТГЦ — ГЦА — ТЦГ — ААА — ГТТ — АЦГ — ЦГТ — АГЦ
4.	УК-1	Ген состоит из 3 одинаковых смысловых (экзоны) и 4 одинаковых несмысловых (интроны) участков, причем интроны состоят из 120 нуклеотидов каждый, а весь ген имеет 1470 нуклеотидов. Сколько кодонов будет иметь про-мРНК, каждый экзон, мРНК и белок, закодированный в этом гене?	про-мРНК содержит 490 кодонов, мРНК – 330 кодонов, экзон –110 кодонов, белок – 330 аминокислот.
5.	УК-1	Известно, что определенный ген эукариотической клетки содержит 4 интрона (два по 24 нуклеотида и два по 36 нуклеотида и 3 экзона (два по 120 нуклеотидов и один 96 нуклеотидов). Определите: количество нуклеотидов в мРНК; количество кодонов в мРНК; количество аминокислот в полипептидной цепи; количество тРНК, участвующих в трансляции.	если ген состоит из 4 интрона (2 по 24 нуклеотида и 2 по 36 нуклеотидов) и 3 экзона (2 по 120 нуклеотидов и 1 по 96 нуклеотидов), то: количество нуклеотидов в мРНК — 336; — количество кодонов в мРНК — 112; — количество аминокислот в полипептидной цепи — 112; — количество тРНК, участвующих в трансляции — 112.
6.	УК-1	Как изменится соотношение нуклеотидов в ДНК, копией которой является следующая мРНК — УУГГАЦЦГГУУА, если произошли следующие изменения: после 1-го триплета был вставлен тимин, после второго и третьего добавлен аденин.	соотношение нуклеотидов в исходной ДНК и мутированной изменилось с 1 до 1,99.
7.	УК-1	Исследования показали, что нуклеотидный состав мРНК следующий:30% приходится на гуанин, 10% — на цитозин, 16% — на аденин и 44% —на урацил. Определите процентный состав по нуклеотидам той части ДНК, слепком которой является изученная мРНК.	если в иРНК процентный состав нуклеотидов: Г – 30%, Ц – 10%, А – 16%, У – 44%, то в ДНК он представлен следующим образом: Г и Ц – по 20%, А и Т – по 30%

8.	УК-1	Известно, что расстояние между нуклеотидами в цепочках ДНК составляет 34×10-11 м. Какую длину имеет ген, определяющий белок, состоящий из 134 аминокислот?	длина данного гена равняется ≈ 1,36×10-7 м.
9.	УК-1	Известно, что расстояние между нуклеотидами в цепочках ДНК составляет 34×10-11м. Какую длину имеет ген, определяющий гемоглобин, включающий 287 аминокислот?	если в молекуле гемоглобина 287 аминокислот, то длина цистрона, кодирующего гемоглобин, составляет (861 – 1) × 34×10-11м.
10.	УК-1	У человека альбинизм — аутосомно-рецессивный признак. Мужчина-альбинос женился на женщине с нормальной пигментацией. У них родились 2 детей — нормальный и альбинос. Определить генотипы и фенотипы всех указанных членов семьи, и какова вероятность рождения в этой семье ребенка — альбиноса?	вероятность рождения в этой семье ребенка – альбиноса равна 50 %.
11.	УК-1	У человека ген, вызывающий 1 из форм наследственной глухонемоты, рецессивен по отношению к норме. От брака глухонемой женщины со здоровым мужчиной родился глухонемой ребенок. Определить генотипы и фенотипы всех членов семьи, а также вероятность рождения в этой семье здорового ребенка.	вероятность рождения в этой семье здорового ребенка равна 50%.
12.	УК-1	Гепатоцеребральная дистрофия (нарушение обмена меди)наследуется по аутосомно-рецессивному типу. Какова вероятность рождения больных детей в семье, если 1 из супругов страдает этим заболеванием, а другой здоров и имеет здоровых родителей?	вероятность рождения в этой семье больных детей равна 0. Все дети будут здоровыми.
13.	УК-1	Седая прядь волос у человека – доминантный признак. Определить генотипы родителей и детей, если известно, что у матери есть	вероятность рождения ребенка с седой прядью волос равна 50%.

		CARRELINGEL PORCE VOTUS	
		седая прядь волос, у отца –	
		нет, а из двух детей в семье	
		один имеет седую прядь	
		волос, а другой не имеет.	
		Найти вероятность рождения	
		ребенка с седой прядью волос.	
14.	УК-1	Фенилкетонурия (ФКУ)	вероятность рождения в этой семье
		наследуется как рецессивный	больного ребенка равна 0.Все дети
		признак. Жена гетерозиготна	(100%) будут здоровы. Половина из
		по гену ФКУ, а муж	них (50%) будут носителями гена
		гомозиготен по нормальному	ФКУ.
		аллелю этого гена. Какова	
		вероятность рождения у них	
		больного ребенка?	
15.	УК-1	У человека альбинизм и	вероятность рождения правшей с
		способность преимущественно	нормальной пигментацией равна
		владеть левой рукой –	56,25%, вероятность рождения левшей
		рецессивные признаки,	с нормальной пигментацией и
		которые наследуются	альбиносов-правшей по 18,75%,
		независимо друг от друга.	вероятность рождения альбиносов-
		Каковы генотипы родителей с	левшей равна 6,25%.
		нормальной пигментацией и	_
		владеющих правой рукой,	
		если у них родился альбинос и	
		левша? Каковы вероятности	
		рождения детей: правшей с	
		нормальной пигментацией,	
		левшей с нормальной	
		пигментацией, альбиносов-	
		правшей, альбиносов-левшей?	

Код контролируемой компетенции

ОПК-3. Способен использовать специализированное диагностическое и лечебное оборудование, применять медицинские изделия, лекарственные средства, клеточные продукты и генно-инженерные технологии, предусмотренные порядками оказания медицинской помощи.

No	Код контролиру- емой компетенции	Содержание задания	Правильные ответы
1	ОПК-3	Некоторые формы шизофрении	рародтность заболарання патай р
1.	OHK-3	1 1 1	вероятность заболевания детей в
		наследуются как доминантные	семье = 10 %.
		аутосомные признаки. У	
		гомозигот пенетрантность =	
		100%, у гетерозигот = $20%$.	
		Определите вероятность	
		заболевания детей в семье, где	
		один из супругов гетерозиготен,	
		а другой нормален в отношении	

		анализируемого признака.	
2.	ОПК-3	В родильном доме перепутали	первая пара – родители второго
		детей. Первая пара родителей	ребенка
		имеют I и IV группы крови, а	
		вторая пара I и III. У первого	
		ребенка І группа крови, у второго	
		II. Кто чей ребенок?	
3.	ОПК-3	Глухота и болезнь Вильсона	вероятность рождения в этой
		(нарушение обмена меди) –	семье здорового ребенка равна
		рецессивные признаки. От брака	25%.
		глухого мужчины и женщины с	
		болезнью Вильсона родился	
		ребенок с обеими аномалиями.	
		Какова вероятность рождения в	
		этой семье здорового ребенка?	
4.	ОПК-3	Полидактилия и отсутствие	вероятность рождения детей без
		малых коренных зубов	аномалий равна 6,25%.
		передаются как аутосомно-	
		доминантные признаки. Гены,	
		которые отвечают за эти	
		признаки, расположены в разных	
		парах гомологичных хромосом.	
		Какова вероятность рождения	
		детей без аномалий в семье, где	
		оба родителя страдают обеими	
		болезнями и гетерозиготны по	
	OFFIC 2	этим парам генов?	
5.	ОПК-3	Короткопалость, близорукость и	вероятность рождения
		альбинизм наследуются по	короткопалого ребенка равна
		аутосомно-рецессивному типу.	12,5%, вероятность рождения
		Гены, отвечающие за эти	близорукого ребенка составляет
		признаки, расположены в разных	12,5%. Вероятность рождения
		хромосомах. Короткопалый	ребенка-альбиноса равна также 12,5%.
		близорукий с нормальной пигментацией мужчина женился	12,5%.
		на здоровой женщине-	
		альбиноске. Их первый ребенок	
		был короткопалым, второй	
		близоруким, третий альбиносом.	
		Определить генотипы родителей	
		и детей. Определить вероятности	
		их рождения.	
6.	ОПК-3	Наследование слуха у человека	вероятность рождения глухих
	-	определяется двумя	детей в этой семье равна 0. Все
		доминантными генами из разных	потомки будут здоровы.
		аллельных пар, один из которых	
		детерминирует развитие	
		слухового нерва, а другой –	
		развитие улитки. Определите	
		вероятность рождения глухих	
		детей, если оба родителя глухие,	
		но по разным генетическим	

		T /	
		причинам (у первого родителя	
		отсутствует слуховой нерв, у	
		другого – улитка). По генотипу	
		оба родителя являются	
		дигомозиготными.	
7.	ОПК-3	Цвет кожи у мулатов наследуется	Ответ: ребенок от брака среднего
		по типу кумулятивной	мулата и белой женщины не
		полимерии. При этом за данный	может быть темнее своего отца.
		признак отвечают 2 аутосомных	
		не сцепленных гена. Сын белой	
		женщины и негра женился на	
		белой женщине. Может ли	
		ребенок от этого брака быть	
		темнее своего отца?	
8.	ОПК-3	Редкий рецессивный ген (h) в	Вероятность рождения детей с I
0.	Offic 3	гомозиготном состоянии	группой крови равна 2/8 или 1/4
		обладает эпистатическим	(25%).
		действием по отношению к генам	(2370).
		ЈА, ЈВ и изменяет их действие до	
		І группы крови (бомбейский	
		1 0	
		феномен). Определите	
		возможные группы крови у	
		детей, если: у мужа II	
		гомозиготная, у жены IV и оба	
		родителя гомозиготны по	
		эпистатическому гену. Какова	
		вероятность рождения детей с I	
	0777.0	группой крови?	
9.	ОПК-3	Редкий плейотропный	Ответ: все девочки в потомстве
		рецессивный сцепленный с Х-	этой семьи будут здоровы, из них
		хромосомой ген обуславливает	50% будут носителями гена
		незаращение верхней губы в	данного заболевания, а из
		сочетании с полидактилией.	мальчиков – 50% будут здоровы,
		Какое будет потомство, если	50% будут иметь данное
		мать – носитель, а отец – здоров?	заболевание.
10.	ОПК-3	Отсутствие потовых желез у	Ответ: вероятность рождения
		людей – рецессивный	детей с данной аномалией равна 0,
		признак, сцепленный с Х-	все 100% детей будут здоровы, все
		хромосомой. Мужчина, у	девочки будут носителями гена
		которого отсутствуют потовые	отсутствия потовых желез.
		железы, женился на женщине, в	
		семье которой никогда не	
		встречалось это заболевание.	
		Какова вероятность рождения у	
		них детей с этой аномалией?	
11.	ОПК-3	Женщина получила от матери	Ответ: 45% детей с IV группой
		аутосому с доминантным геном,	крови будут страдать данным
		обуславливающим дефект ногтей	заболеванием; 5% детей с III
		коленной чашечки и геном,	группой крови будут болеть; 45%
		обуславливающим группу крови	здоровых детей будут иметь II
		А. В гомологичной хромосоме	группу крови, 5% здоровых детей
		находится рецессивный ген, не	будут с IV группой крови.
			- 5, 15

			T
		влияющий на коленную чашечку	
		и характер ногтей, и ген I группы	
		крови. Расстояние между генами	
		10 морганид. Муж имеет	
		нормальную коленную чашечку	
		и отсутствие дефекта ногтей и III	
		гомозиготную группу крови.	
		Определитевозможные	
		фенотипы в потомстве этой	
		семьи.	
	ОПК-3	V V	O
	OHK-3	Альбинизм общий наследуется	Ответ: частота встречаемости
		± •	ерозигот в популяции 1:70
		принак. Заболевание встречается	
		с частотой 1:20000. Вычислите	
		количест-во гетерозигот в	
		популяции.	
13.	ОПК-3	Подагра определяется	Ответ: в данной популяции
		доминантным аутосомным	генотипы встречаются следующим
		геном, но у женщин его	образом: АА – 1%; Аа – 18%; аа –
		пенетрантность составляет 0%, а	81%.
		у мужчин – 20%. Определите	
		генетическую структуру	
		популяции, если среди 10 000	
		жителей подагру имеют	
1.4	ОПИ 2	примерно 190 человек.	0
14.	ОПК-3	В некоторых научных статьях	Ответ: в популяциях пигмеев
		приводятся данные о	частоты встречаемости аллелей
		распространении групп крови	гена группы крови по системе АВ0
		среди популяций человека.	составляют: $A - 22,9\%$; $B - 22,1\%$;
		Например, среди пигмеев эти	0-54,9%.
		частоты выглядят следующим	
		образом: I группа – 30,2%; II	
		группа –30,3%; III группа –	
		29,1%; IV группа – 10,4%.	
		Определите частоту	
		встречаемости в популяции	
		пигмеев аллелей гена группы	
		крови по системе АВО.	
15.	ОПК-3	Пробанд страдает ночной	Ответ: если пробанд страдает
13.	OHK-3	слепотой. Его два брата также	ночной слепотой и он
		=	
		больны. По линии отца пробанда	гетерозиготен, а его супруга
		страдающих ночной слепотой не	здорова, то вероятность рождения
		было. Мать пробанда больна. Две	больных детей в этой семье
		сестры и два брата матери	составит 50% безотносительно к
		пробанда здоровы. Они имеют	полу.
		только здоровых детей. По	
		материнской линии дальше	
		известно, что бабушка больна,	
		дедушка здоров, сестра бабушки	
		больна, а брат здоров,	
		прадедушка (отец бабушки)	
		страдал ночной слепотой, сестра	
		1 - 1 pagami iro irrori orrorio 1011, oco 1 pa	

и брат прадедушки были больны,	
прапрадедушка болен, его брат,	
имеющий больную дочь и двух	
больных сыновей, также болен.	
Жена пробанда, ее родители и	
родственники здоровы.	
Определите вероятность	
рождения больных детей в семье	
пробанда.	

КРИТЕРИЙ ОЦЕНКИ ОБУЧАЮЩЕГОСЯ ПО ДИСЦИПЛИНЕ

Проведение контроля знаний по дисциплине предполагает соблюдение ряда условий, обеспечивающих педагогическую эффективность оценочной процедуры. Важнейшие среди них:

- 1. Обеспечить самостоятельность ответа обучающегося по вопросам одинаковой сложности требуемой программой уровня;
- 2. Определить глубину знаний программы;
- 3. Определить уровень владения научным языком и терминологией;
- 4. Определить умение логически, корректно и аргументированно излагать ответ;
- 5. Определить умение выполнять предусмотренные программой задания.

Оценки «отлично» заслуживает ответ, содержащий:

- Глубокое и систематическое знание всего программного материала;
- Свободное владение научным языком и терминологией;
- Логически корректное и аргументированное изложение ответа;
- Умение выполнять предусмотренные программой задания.

Оценки «хорошо» заслуживает ответ, содержащий:

- Знание важнейших разделов и основного содержания программы;
- Умение пользоваться научным языком и терминологией;
- В целом логически корректное, но не всегда аргументированное изложение ответа;
- Умение выполнять предусмотренные программой задания.

Оценки «удовлетворительно» заслуживает ответ, содержащий:

- Фрагментарные, поверхностные знания важнейших разделов и основного содержания программы;
- Затруднения в использовании научного языка и терминологии;
- Стремление логически, последовательно и аргументированно изложить ответ;
- Затруднения при выполнении предусмотренных программой задания.

Оценки «неудовлетворительно» заслуживает ответ, содержащий:

- Незнание вопросов основного содержания программы;
- Неумение выполнять предусмотренные программой задания.